Privacy Policy
Home » Problems » bvpT33

bvpT33

 

 

bvpT33
Contributor:  testset of J.R. Cash
Discipline:  academic test
Accession:  2013

 

 

 

 

 

 

Short description:

A syetm of two coupled  differential equations that is reduced to a first order system of 6 equations.

Applicable solvers:

all the solvers supported by the Test Set.

 

Plots of the solution <- click to generate the plots of the solution and the textual output

 

 

 

 

Mathematical description:

 

 

 

The problem is

    \begin{eqnarray*} 	\lambda z'''' = - z z''' - y y',\,\, \lambda y'' = y z' - z y',\\  y(0) =-1,\, y(1) = 1, \\ z(0) =z'(0) = z(1) =z'(1) = 0, 	\end{eqnarray*}

with

    \[ 	z,y \in \mathbb{R}, \;\;\; t\in [0,1]. 	\]

We write this problem in first order form by defining y_1=y,\,y_2 = y',\,y_3 = z,\,y_4 = z',\, y_5 = z'' and y_6 = z''', yielding a system of differential equations of the form

    \begin{equation*} 	\left(\begin{array}{c} 	y_1\\ 	y_2\\ 	y_3\\ 	y_4\\ 	y_5\\ 	y_6 	\end{array}\right)'= 	\left(\begin{array}{c} 	y_2\\ 	\frac{1}{\lambda}y_1 y_4 - y_3 y_2\\ 	y_4\\ 	y_5\\ 	y_6\\ 	\frac{1}{\lambda}(-y_3 y_6 - y_1 y_2 ) 	\end{array}\right), 	\end{equation*}

with

    \[ 	(y_1,y_2,y_3,y_4,y_5,y_6)^T \in \mathbb{R}^{6}, \;\;\; t \in [0,1]. 	\]

The boundary conditions are obtained from

    \begin{equation*} 	\left( 	\begin{array}{cccccc} 	1 & 0 & 0 & 0&0 & 0\\ 	0 & 0 & 1 & 0&0 & 0\\ 	0 & 0 & 0 & 1&0 & 0\\ 	0 & 0 & 0 & 0&0 & 0\\ 	0 & 0 & 0 & 0&0 & 0\\ 	0 & 0 & 0 & 0&0 & 0 \end{array} 	\right) 	\left(\begin{array}{c} 	y_{1}(0)\\ 	y_{2}(0)\\ 	y_{3}(0)\\ 	y_{4}(0)\\ 	y_{5}(0)\\ 	y_{6}(0) 	\end{array}\right) 	+ 	\left( 	\begin{array}{cccccc} 	0 & 0 & 0 & 0&0 & 0\\ 0 & 0 & 0 & 0&0 & 0\\ 0 & 0 & 0 & 0&0 & 0\\ 1 & 0 & 0 & 0&0 & 0\\ 0 & 0 & 1 & 0&0 & 0\\ 	0 & 0 & 0 & 1&0 & 0 \end{array} 	\right) 	\left(\begin{array}{c} 	y_{1}(1)\\ 	y_{2}(1)\\ 	y_{3}(1)\\ 	y_{4}(1) \\ 	y_{5}(1) \\ 	y_{6}(1) 	\end{array}\right)=\left(\begin{array}{c} 	-1 \\ 	0 \\ 	0\\ 	1\\ 	0\\ 	0 	\end{array}\right). 	\end{equation*}

 
 

Download: