Privacy Policy
Home » Problems » bvpT32

bvpT32

 

 

bvpT32
Contributor:  testset of J.R. Cash
Discipline:  academic test
Accession:  2013

 

 

 

 

 

Short description:

A fourth order differential equations that is reduced to a first order system of 4 equations.

Applicable solvers:

all the solvers supported by the Test Set.

 

Plots of the solution <- click to generate the plots of the solution and the textual output

 

 

 

 

Mathematical description:

 

 

The problem is

    \begin{eqnarray*} 	z'''' =\lambda( z' z'' - z z''') , \;\;\;z(0) =z'(0) = 0, \;\;\; z(1) = 1,\;\;\; z'(1) = 0 	\end{eqnarray*}

with

    \[ 	z \in \mathbb{R} , \;\;\; t\in [0,1]. 	\]

We write this problem in first order form by defining y_1=z,\,y_2 = z',\,y_3 = z'' and y_4 = z''', yielding a system of differential equations of the form

    \begin{equation*} 	\left(\begin{array}{c} 	y_1\\ 	y_2\\ 	y_3\\ 	y_4 	\end{array}\right)'= 	\left(\begin{array}{c} 	y_2\\ 	y_3\\ 	y_4\\ 	f(y_1,y_2,y_3,y_4) 	\end{array}\right), 	\end{equation*}

where

    \begin{equation*} 	f(z,z',z'',z''') = \lambda( z' z'' - z z'''), 	\end{equation*}

with

    \[ 	(y_1,y_2,y_3,y_4)^T \in \mathbb{R}^{4} , \;\;\; t \in [0,1]. 	\]

The boundary conditions are obtained from

    \begin{equation*} 	\left( 	\begin{array}{cccc} 	1 & 0 & 0 & 0\\ 	0 & 1 & 0 & 0\\ 	0 & 0 & 0 & 0\\ 	0 & 0 & 0 & 0\\ 	\end{array} 	\right) 	\left(\begin{array}{c} 	y_{1}(0)\\ 	y_{2}(0)\\ 	y_{3}(0)\\ 	y_{4}(0) 	\end{array}\right) 	+ 	\left( 	\begin{array}{cccc} 	0 & 0 & 0 & 0\\ 	0 & 0 & 0 & 0\\ 	1 & 0 & 0 & 0\\ 	0 & 1 & 0 & 0\\ 	\end{array} 	\right) 	\left(\begin{array}{c} 	y_{1}(1)\\ 	y_{2}(1)\\ 	y_{3}(1)\\ 	y_{4}(1) 	\end{array}\right)=\left(\begin{array}{c} 	0 \\ 	0 \\ 	1\\ 	0 	\end{array}\right). 	\end{equation*}

This problem arises from fluid injection through one side of a long vertical
channel

 
 

Download: