subroutine daxpy(n,da,dx,incx,dy,incy) c c constant times a vector plus a vector. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c double precision dx(1),dy(1),da integer i,incx,incy,ix,iy,m,mp1,n c if(n.le.0)return if (da .eq. 0.0d0) return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dy(iy) = dy(iy) + da*dx(ix) ix = ix + incx iy = iy + incy 10 continue return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,4) if( m .eq. 0 ) go to 40 do 30 i = 1,m dy(i) = dy(i) + da*dx(i) 30 continue if( n .lt. 4 ) return 40 mp1 = m + 1 do 50 i = mp1,n,4 dy(i) = dy(i) + da*dx(i) dy(i + 1) = dy(i + 1) + da*dx(i + 1) dy(i + 2) = dy(i + 2) + da*dx(i + 2) dy(i + 3) = dy(i + 3) + da*dx(i + 3) 50 continue return end subroutine dscal(n,da,dx,incx) c c scales a vector by a constant. c uses unrolled loops for increment equal to one. c jack dongarra, linpack, 3/11/78. c modified 3/93 to return if incx .le. 0. c double precision da,dx(1) integer i,incx,m,mp1,n,nincx c if( n.le.0 .or. incx.le.0 )return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c nincx = n*incx do 10 i = 1,nincx,incx dx(i) = da*dx(i) 10 continue return c c code for increment equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dx(i) = da*dx(i) 30 continue if( n .lt. 5 ) return 40 mp1 = m + 1 do 50 i = mp1,n,5 dx(i) = da*dx(i) dx(i + 1) = da*dx(i + 1) dx(i + 2) = da*dx(i + 2) dx(i + 3) = da*dx(i + 3) dx(i + 4) = da*dx(i + 4) 50 continue return end integer function idamax(n,dx,incx) c c finds the index of element having max. absolute value. c jack dongarra, linpack, 3/11/78. c modified 3/93 to return if incx .le. 0. c double precision dx(1),dmax integer i,incx,ix,n c idamax = 0 if( n.lt.1 .or. incx.le.0 ) return idamax = 1 if(n.eq.1)return if(incx.eq.1)go to 20 c c code for increment not equal to 1 c ix = 1 dmax = dabs(dx(1)) ix = ix + incx do 10 i = 2,n if(dabs(dx(ix)).le.dmax) go to 5 idamax = i dmax = dabs(dx(ix)) 5 ix = ix + incx 10 continue return c c code for increment equal to 1 c 20 dmax = dabs(dx(1)) do 30 i = 2,n if(dabs(dx(i)).le.dmax) go to 30 idamax = i dmax = dabs(dx(i)) 30 continue return end subroutine dgefa(a,lda,n,ipvt,info) integer lda,n,ipvt(1),info double precision a(lda,1) c c dgefa factors a double precision matrix by gaussian elimination. c c dgefa is usually called by dgeco, but it can be called c directly with a saving in time if rcond is not needed. c (time for dgeco) = (1 + 9/n)*(time for dgefa) . c c on entry c c a double precision(lda, n) c the matrix to be factored. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c on return c c a an upper triangular matrix and the multipliers c which were used to obtain it. c the factorization can be written a = l*u where c l is a product of permutation and unit lower c triangular matrices and u is upper triangular. c c ipvt integer(n) c an integer vector of pivot indices. c c info integer c = 0 normal value. c = k if u(k,k) .eq. 0.0 . this is not an error c condition for this subroutine, but it does c indicate that dgesl or dgedi will divide by zero c if called. use rcond in dgeco for a reliable c indication of singularity. c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,dscal,idamax c c internal variables c double precision t integer idamax,j,k,kp1,l,nm1 c c c gaussian elimination with partial pivoting c info = 0 nm1 = n - 1 if (nm1 .lt. 1) go to 70 do 60 k = 1, nm1 kp1 = k + 1 c c find l = pivot index c l = idamax(n-k+1,a(k,k),1) + k - 1 ipvt(k) = l c c zero pivot implies this column already triangularized c if (a(l,k) .eq. 0.0d0) go to 40 c c interchange if necessary c if (l .eq. k) go to 10 t = a(l,k) a(l,k) = a(k,k) a(k,k) = t 10 continue c c compute multipliers c t = -1.0d0/a(k,k) call dscal(n-k,t,a(k+1,k),1) c c row elimination with column indexing c do 30 j = kp1, n t = a(l,j) if (l .eq. k) go to 20 a(l,j) = a(k,j) a(k,j) = t 20 continue call daxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 30 continue go to 50 40 continue info = k 50 continue 60 continue 70 continue ipvt(n) = n if (a(n,n) .eq. 0.0d0) info = n return end subroutine dgbfa(abd,lda,n,ml,mu,ipvt,info) integer lda,n,ml,mu,ipvt(1),info double precision abd(lda,1) c c dgbfa factors a double precision band matrix by elimination. c c dgbfa is usually called by dgbco, but it can be called c directly with a saving in time if rcond is not needed. c c on entry c c abd double precision(lda, n) c contains the matrix in band storage. the columns c of the matrix are stored in the columns of abd and c the diagonals of the matrix are stored in rows c ml+1 through 2*ml+mu+1 of abd . c see the comments below for details. c c lda integer c the leading dimension of the array abd . c lda must be .ge. 2*ml + mu + 1 . c c n integer c the order of the original matrix. c c ml integer c number of diagonals below the main diagonal. c 0 .le. ml .lt. n . c c mu integer c number of diagonals above the main diagonal. c 0 .le. mu .lt. n . c more efficient if ml .le. mu . c on return c c abd an upper triangular matrix in band storage and c the multipliers which were used to obtain it. c the factorization can be written a = l*u where c l is a product of permutation and unit lower c triangular matrices and u is upper triangular. c c ipvt integer(n) c an integer vector of pivot indices. c c info integer c = 0 normal value. c = k if u(k,k) .eq. 0.0 . this is not an error c condition for this subroutine, but it does c indicate that dgbsl will divide by zero if c called. use rcond in dgbco for a reliable c indication of singularity. c c band storage c c if a is a band matrix, the following program segment c will set up the input. c c ml = (band width below the diagonal) c mu = (band width above the diagonal) c m = ml + mu + 1 c do 20 j = 1, n c i1 = max0(1, j-mu) c i2 = min0(n, j+ml) c do 10 i = i1, i2 c k = i - j + m c abd(k,j) = a(i,j) c 10 continue c 20 continue c c this uses rows ml+1 through 2*ml+mu+1 of abd . c in addition, the first ml rows in abd are used for c elements generated during the triangularization. c the total number of rows needed in abd is 2*ml+mu+1 . c the ml+mu by ml+mu upper left triangle and the c ml by ml lower right triangle are not referenced. c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,dscal,idamax c fortran max0,min0 c c internal variables c double precision t integer i,idamax,i0,j,ju,jz,j0,j1,k,kp1,l,lm,m,mm,nm1 c c m = ml + mu + 1 info = 0 c c zero initial fill-in columns c j0 = mu + 2 j1 = min0(n,m) - 1 if (j1 .lt. j0) go to 30 do 20 jz = j0, j1 i0 = m + 1 - jz do 10 i = i0, ml abd(i,jz) = 0.0d0 10 continue 20 continue 30 continue jz = j1 ju = 0 c c gaussian elimination with partial pivoting c nm1 = n - 1 if (nm1 .lt. 1) go to 130 do 120 k = 1, nm1 kp1 = k + 1 c c zero next fill-in column c jz = jz + 1 if (jz .gt. n) go to 50 if (ml .lt. 1) go to 50 do 40 i = 1, ml abd(i,jz) = 0.0d0 40 continue 50 continue c c find l = pivot index c lm = min0(ml,n-k) l = idamax(lm+1,abd(m,k),1) + m - 1 ipvt(k) = l + k - m c c zero pivot implies this column already triangularized c if (abd(l,k) .eq. 0.0d0) go to 100 c c interchange if necessary c if (l .eq. m) go to 60 t = abd(l,k) abd(l,k) = abd(m,k) abd(m,k) = t 60 continue c c compute multipliers c t = -1.0d0/abd(m,k) call dscal(lm,t,abd(m+1,k),1) c c row elimination with column indexing c ju = min0(max0(ju,mu+ipvt(k)),n) mm = m if (ju .lt. kp1) go to 90 do 80 j = kp1, ju l = l - 1 mm = mm - 1 t = abd(l,j) if (l .eq. mm) go to 70 abd(l,j) = abd(mm,j) abd(mm,j) = t 70 continue call daxpy(lm,t,abd(m+1,k),1,abd(mm+1,j),1) 80 continue 90 continue go to 110 100 continue info = k 110 continue 120 continue 130 continue ipvt(n) = n if (abd(m,n) .eq. 0.0d0) info = n return end double precision function ddot(n,dx,incx,dy,incy) c c forms the dot product of two vectors. c uses unrolled loops for increments equal to one. c jack dongarra, linpack, 3/11/78. c double precision dx(1),dy(1),dtemp integer i,incx,incy,ix,iy,m,mp1,n c ddot = 0.0d0 dtemp = 0.0d0 if(n.le.0)return if(incx.eq.1.and.incy.eq.1)go to 20 c c code for unequal increments or equal increments c not equal to 1 c ix = 1 iy = 1 if(incx.lt.0)ix = (-n+1)*incx + 1 if(incy.lt.0)iy = (-n+1)*incy + 1 do 10 i = 1,n dtemp = dtemp + dx(ix)*dy(iy) ix = ix + incx iy = iy + incy 10 continue ddot = dtemp return c c code for both increments equal to 1 c c c clean-up loop c 20 m = mod(n,5) if( m .eq. 0 ) go to 40 do 30 i = 1,m dtemp = dtemp + dx(i)*dy(i) 30 continue if( n .lt. 5 ) go to 60 40 mp1 = m + 1 do 50 i = mp1,n,5 dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) + * dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4) 50 continue 60 ddot = dtemp return end subroutine dgesl(a,lda,n,ipvt,b,job) integer lda,n,ipvt(1),job double precision a(lda,1),b(1) c c dgesl solves the double precision system c a * x = b or trans(a) * x = b c using the factors computed by dgeco or dgefa. c c on entry c c a double precision(lda, n) c the output from dgeco or dgefa. c c lda integer c the leading dimension of the array a . c c n integer c the order of the matrix a . c c ipvt integer(n) c the pivot vector from dgeco or dgefa. c c b double precision(n) c the right hand side vector. c c job integer c = 0 to solve a*x = b , c = nonzero to solve trans(a)*x = b where c trans(a) is the transpose. c c on return c c b the solution vector x . c c error condition c c a division by zero will occur if the input factor contains a c zero on the diagonal. technically this indicates singularity c but it is often caused by improper arguments or improper c setting of lda . it will not occur if the subroutines are c called correctly and if dgeco has set rcond .gt. 0.0 c or dgefa has set info .eq. 0 . c c to compute inverse(a) * c where c is a matrix c with p columns c call dgeco(a,lda,n,ipvt,rcond,z) c if (rcond is too small) go to ... c do 10 j = 1, p c call dgesl(a,lda,n,ipvt,c(1,j),0) c 10 continue c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,ddot c c internal variables c double precision ddot,t integer k,kb,l,nm1 c nm1 = n - 1 if (job .ne. 0) go to 50 c c job = 0 , solve a * x = b c first solve l*y = b c if (nm1 .lt. 1) go to 30 do 20 k = 1, nm1 l = ipvt(k) t = b(l) if (l .eq. k) go to 10 b(l) = b(k) b(k) = t 10 continue call daxpy(n-k,t,a(k+1,k),1,b(k+1),1) 20 continue 30 continue c c now solve u*x = y c do 40 kb = 1, n k = n + 1 - kb b(k) = b(k)/a(k,k) t = -b(k) call daxpy(k-1,t,a(1,k),1,b(1),1) 40 continue go to 100 50 continue c c job = nonzero, solve trans(a) * x = b c first solve trans(u)*y = b c do 60 k = 1, n t = ddot(k-1,a(1,k),1,b(1),1) b(k) = (b(k) - t)/a(k,k) 60 continue c c now solve trans(l)*x = y c if (nm1 .lt. 1) go to 90 do 80 kb = 1, nm1 k = n - kb b(k) = b(k) + ddot(n-k,a(k+1,k),1,b(k+1),1) l = ipvt(k) if (l .eq. k) go to 70 t = b(l) b(l) = b(k) b(k) = t 70 continue 80 continue 90 continue 100 continue return end subroutine dgbsl(abd,lda,n,ml,mu,ipvt,b,job) integer lda,n,ml,mu,ipvt(1),job double precision abd(lda,1),b(1) c c dgbsl solves the double precision band system c a * x = b or trans(a) * x = b c using the factors computed by dgbco or dgbfa. c c on entry c c abd double precision(lda, n) c the output from dgbco or dgbfa. c c lda integer c the leading dimension of the array abd . c c n integer c the order of the original matrix. c c ml integer c number of diagonals below the main diagonal. c c mu integer c number of diagonals above the main diagonal. c c ipvt integer(n) c the pivot vector from dgbco or dgbfa. c c b double precision(n) c the right hand side vector. c c job integer c = 0 to solve a*x = b , c = nonzero to solve trans(a)*x = b , where c trans(a) is the transpose. c c on return c c b the solution vector x . c c error condition c c a division by zero will occur if the input factor contains a c zero on the diagonal. technically this indicates singularity c but it is often caused by improper arguments or improper c setting of lda . it will not occur if the subroutines are c called correctly and if dgbco has set rcond .gt. 0.0 c or dgbfa has set info .eq. 0 . c c to compute inverse(a) * c where c is a matrix c with p columns c call dgbco(abd,lda,n,ml,mu,ipvt,rcond,z) c if (rcond is too small) go to ... c do 10 j = 1, p c call dgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0) c 10 continue c c linpack. this version dated 08/14/78 . c cleve moler, university of new mexico, argonne national lab. c c subroutines and functions c c blas daxpy,ddot c fortran min0 c c internal variables c double precision ddot,t integer k,kb,l,la,lb,lm,m,nm1 c m = mu + ml + 1 nm1 = n - 1 if (job .ne. 0) go to 50 c c job = 0 , solve a * x = b c first solve l*y = b c if (ml .eq. 0) go to 30 if (nm1 .lt. 1) go to 30 do 20 k = 1, nm1 lm = min0(ml,n-k) l = ipvt(k) t = b(l) if (l .eq. k) go to 10 b(l) = b(k) b(k) = t 10 continue call daxpy(lm,t,abd(m+1,k),1,b(k+1),1) 20 continue 30 continue c c now solve u*x = y c do 40 kb = 1, n k = n + 1 - kb b(k) = b(k)/abd(m,k) lm = min0(k,m) - 1 la = m - lm lb = k - lm t = -b(k) call daxpy(lm,t,abd(la,k),1,b(lb),1) 40 continue go to 100 50 continue c c job = nonzero, solve trans(a) * x = b c first solve trans(u)*y = b c do 60 k = 1, n lm = min0(k,m) - 1 la = m - lm lb = k - lm t = ddot(lm,abd(la,k),1,b(lb),1) b(k) = (b(k) - t)/abd(m,k) 60 continue c c now solve trans(l)*x = y c if (ml .eq. 0) go to 90 if (nm1 .lt. 1) go to 90 do 80 kb = 1, nm1 k = n - kb lm = min0(ml,n-k) b(k) = b(k) + ddot(lm,abd(m+1,k),1,b(k+1),1) l = ipvt(k) if (l .eq. k) go to 70 t = b(l) b(l) = b(k) b(k) = t 70 continue 80 continue 90 continue 100 continue return end