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Introduction

dy

dx
= f(x, y), a ≤ x ≤ b, y ∈ Rm, g(y(a), y(b)) = 0.

Typically numerical methods attempt to control the error
in the solution:

by estimating the pointwise local error at the mesh
points;
by controlling the residual;

In order to study the conditioning the standard
approach is to examine the behaviour of the solutions in
the neighborhood of an isolated solution;

This leads us to consider linear equations.
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Linear problems

dy
dx
= A(x)y + q(x), a ≤ x ≤ b, Bay(a) +Bby(b) = β.

the solution is given by

y(x) = Y (x)Q−1β +

∫ b

a

G(x, t)q(t)dt.

Q = BaY (a) +BbY (b)

G(x, t) is the Green’s function
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Conditioning parameters ∞-norm

du

dx
= A(x)u+ q(x) + δ(x), a ≤ x ≤ b,

Bau(a) +Bbu(b) = β + ε.

u(x)− y(x) = Y (x)Q−1ε+
∫ b

a
G(x, t)δ(t)dt.

||u(x)− y(x)|| ≤ ||Y (x)Q−1ε||+ ||
∫ b

a
G(x, t)δ(t)dt||

maxa≤x≤b ||u(x)− y(x)|| ≤ κ1‖ε‖+ κ2maxa≤x≤b ||δ(x)||

maxa≤x≤b ||u(x)− y(x)|| ≤ κmax(‖ε‖,maxa≤x≤b ||δ(x)||)

κ1 = maxa≤x≤b ||Y (x)Q
−1||, κ2 = supx

∫ b

a
||G(x, t)||dt,

κ = maxa≤x≤b(||Y (x)Q
−1||+

∫ b

a
||G(x, t)||dt).
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Conditioning parameters 1-norm

u(x)− y(x) = Y (x)Q−1ε+
∫ b

a
G(x, t)δ(t)dt.

||u(x)− y(x)|| ≤ ||Y (x)Q−1ε||+ ||
∫ b

a
G(x, t)δ(t)dt||

∫ b

a
||u(x)− y(x)||dx ≤ γ1‖ε‖+ γ2maxa≤x≤b ||δ(x)||∫ b

a
||u(x)− y(x)||dx ≤ γmax(‖ε‖,maxa≤x≤b ||δ(x)||)

γ1 =
∫ b

a
||Y (x)Q−1||dx,

γ2 =
∫ b

a

∫ b

a
||G(x, t)||dtdx,

γ =
∫ b

a
((||Y (x)Q−1||+

∫ b

a
||G(x, t)||dt))dx.
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Classification of the problems

If κ and γ are both of moderate size we are dealing with
a well conditioned problem.

Conversely if both are large we have an ill conditioned
problem.

A rather different case is when only κ is large and γ is
small.

This means that the problem is ill conditioned using the
maximum norm and well conditioned using the 1 norm.

The problems that fall into this class are typically those
possessing different time scales.

Brugnano and Trigiante, using κ1 and γ1, classified this
class of problems as "stiff".
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A stiff problem

εy′′ + xy′ = −επ2cos(πx)− πxsin(πx),

y(−1) = −2, y(1) = 0,

ε = 10−10.

This is a "stiff" problem: κ1 ≈ 7.98e+ 4 γ1 ≈ 2.0

Stiffness ratio: κ1/γ1 ≈ 3.95e+ 4

κ ≈ 1.65e+ 5
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Estimating the conditioning

Using a numerical method and the Newton scheme to
solve the nonlinear algebraic equations arising at each
step we obtain a linear system of algebraic equations of
the form Ax = b;

We set up the block matrix A so that the boundary
conditions appear only in the first row block of b;

Ascher, Mattheij and Russell proved that for one-step
schemes ‖A−1‖ ≈ κ;

The computation of the first m columns of A−1 allows us
to have an estimating of κ1 and γ1;

Note that numerical methods not only form A but also
solve a linear system of algebraic equations. This
means that we have the LU factorization of A at hand.
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How to use the conditioning parameters

Shampine and Muir use an estimate of the conditioning
parameter κ in the solvers MIRKDC and BVP4c;

If an appropriately scaled estimate of κ is larger than the
inverse of the tolerance then this generates a warning
that the solution may not be particularly accurate.

In particular the global error in the solution may not be
of the same order of magnitude as the local solution.

An obvious drawback with the above approach is that
the numerical algorithm may be badly conditioned even
though the original continuous problem may be
perfectly well conditioned.
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How to use the conditioning parameters

An alternative way of using the condition numbers was
proposed by Brugnano and Trigiante and inserted in the
MATLAB solver TOM.

The conditioning parameters are also used in the mesh
selection algorithm.
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Mesh selection based on the conditioning

We define the following matrices: G = A−1, Ω having
elements Ωij = ||Gij ||.

The discrete conditioning parameters are defined on
the grid π in the following way:

κ1(π) = max
i
Ωi0, γ1(π) = (

N∑
i=1

himax(Ωi−1,0,Ωi0))/(b−a).

Our aim is to choose the mesh so that:
κ1(π) ≈ κ1 and γ1(π) ≈ γ1

We define a monitor function based on both the local
accuracy and on the conditioning estimate and then use
equidistribution based on this monitor function.

An estimating of κ is also computed.
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Mesh selection based on conditioning

The conditioning parameters κ1 and γ1 take into
account only perturbations with respect to the boundary
conditions ε;

What happens to the perturbation δ(x)?

Suppose we are solving a boundary value problem
where the boundary conditions are appropriate for
handling the decreasing and the increasing modes,
using a numerical method that properly handles the
exponential growth and decay of the solution.

In this case the information provided by κ1 is sufficient
to handle the perturbation δ(x) as well.

A complete information about the conditioning is given
by: κ1, γ1 and κ.

Mesh selection and conditioning for Boundary Value Problems – p.13/31



How to handle inhomogeneous problems

An alternative mesh selection strategy, that takes into
account also the inhomogeneous term, has been
defined in term of the solution of the discrete problem,
instead of the variational operator.

Of course the information is less complete but in many
cases the two approaches give similar results and the
cheapest one should be preferable.
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How to handle inhomogeneous problems

Two parameters are defined on the grid π in the
following way (yi ≈ y(xi)):

κs(π) = max
i
‖yi‖, γs(π) = (

N∑
i=1

himax(‖yi−1‖, ‖yi‖))/(b−a).

Our aim is to choose the mesh so that:
κs(π) ≈ maxa≤x≤b ‖y(x)‖ and γs(π) ≈

∫ b

a
‖y(x)‖dx

We to define a monitor function based on both the local
accuracy and on γs(π) and then use equidistribution
based on this monitor function.
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Mesh selections in the solver TOM

It is possible to choose the mesh selection strategy:

WRCE (optimal with respect to the conditioning and
the approximation of the error):
we use information given by γ1(π), γs(π) and the
approximation of the error;
WRSE (optimal with respect to the solution and the
approximation of the error):
we use information given by γs(π) and the
approximation of the error;
WRE (optimal with respect to the approximation of
the error):
we use information given by the approximation of the
error;
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Mesh selections in the solver TWPBVP

Strategy inserted in the known version of the solver:
WRE (optimal with respect to the approximation of
the error): we use information given by the
approximation of the error;

Strategy inserted in the updated version of the solver (in
preparation):

WRCE (optimal with respect to the conditioning and
the approximation of the error):
we use information given by γ1(π) and the
approximation of the error;
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A stiff problem
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 κ
d
 = 79788.45616, γ

d
 = 2.02944, N = 480

εy′′ + xy′ = 0, y(−1) = 0, y(1) = 2, ε = 10−10.

This is a "stiff" problem: κ1 ≈ 7.98e+ 4, γ1 ≈ 2.0

Stiffness ratio: κ1/γ1 ≈ 3.97e+ 4

κ ≈ 1.65e+ 5
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Numerical Solution using TOM (WRCE)

ε = 10−10, Reltol = 10−3, Abstol = 10−3.

κ(π) κ1(π) γ1(π) N Error order

2.09d+ 1 8.73d+ 0 3.80 15 2.40d+ 0 6

1.33d+ 2 6.33d+ 1 2.97 60 8.66d− 2 6

1.53d+ 3 5.54d+ 2 2.99 100 3.84d− 1 6

1.33d+ 4 6.63d+ 3 3.00 130 4.94d− 1 2

1.23d+ 5 6.14d+ 4 3.05 210 8.79d− 1 2

1.59d+ 5 7.95d+ 4 2.10 230 4.40d− 1 2

1.59d+ 5 7.98d+ 4 2.03 300 7.63d− 1 2

2.91d+ 5 7.98d+ 4 2.03 430 7.14d− 6 6
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Numerical Solution using TOM (WRSE)
ε = 10−10, Reltol = 10−3, Abstol = 10−3.

κ(π) κs(π) γs(π) N Error order

2.09d+ 1 8.73d+ 0 3.94 15 2.40d+ 0 6

1.34d+ 2 6.40d+ 1 2.97 60 8.66d− 2 6

5.73d+ 2 2.12d+ 2 32.05 105 8.37d− 1 6

4.88d+ 2 2.44d+ 2 4.63 115 6.81d− 1 2

4.36d+ 2 2.18d+ 3 6.84 140 8.06d− 1 2

7.03d+ 4 3.52d+ 4 4.78 160 8.95d− 1 2

1.58d+ 5 7.92d+ 4 2.13 210 5.84d− 1 2

1.59d+ 5 7.97d+ 4 2.03 265 9.08d− 1 2

2.14d+ 5 7.98d+ 4 2.03 325 2.99d− 1 6

2.09d+ 5 7.98d+ 4 2.03 345 3.56d− 2 6

1.80d+ 5 7.97d+ 4 2.03 430 7.22d− 3 6
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Numerical Solution using TWPBVP (WRCE)

ε = 10−6, Reltol = 10−6.

κ1 γ1 Error in Order 4 Error in order 6
0.18d+ 2 0.39d+ 1 0.32d− 4 0.37d+ 0

0.36d+ 2 0.39d+ 1 0.22d− 3 0.15d+ 1

0.71d+ 2 0.40d+ 1 0.12d− 2 0.62d+ 1

0.14d+ 3 0.40d+ 1 0.27d− 2 0.58d+ 1

0.25d+ 3 0.41d+ 1 0.14d− 2 0.18d+ 2

0.38d+ 3 0.38d+ 1 0.38d− 1 0.27d+ 2

0.40d+ 3 0.21d+ 1 0.17d− 1 0.74d− 1

0.40d+ 3 0.17d+ 1 0.57d− 3 0.19d− 1

0.40d+ 3 0.161d+ 1 0.14d− 3 0.67d− 2

0.40d+ 3 0.161d+ 1 0.80d− 5 0.30d− 5
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An ill conditioned linear problem
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 κ
d
 = 997.99398, γ

d
 = 2.17831, N = 170

so
l.y

(1
,:)

εy′′ − xy′ + y = 0, y(−1) = 1, y(1) = 2, ε = 10−3.

κ1 ≈ 9.98d+ 2, γ1 ≈ 2.18

Stiffness ratio: κ1/γ1 ≈ 4.58d2

κ ≈ 8.53d+ 13
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Numerical Solution using TOM (WRCE)

ε = 10−3, Reltol = 10−3, Abstol = 10−3.

κ(π) κ1(π) γ1(π) N Error order

3.22d+ 00 1.02d+ 00 1.01 15 1.09d− 1 6

1.33d+ 03 1.88d+ 02 17.18 60 8.87d− 1 6

2.24d+ 04 6.08d+ 02 4.43 100 1.09d+ 0 6

8.53d+ 13 9.98d+ 02 2.18 170 5.70d− 3 6
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Numerical Solution using TOM (WRSE)

ε = 10−3, Reltol = 10−3, Abstol = 10−3.

κ(π) κs(π) γs(π) N Error order

4.90d+ 00 1.53d0 1.51 15 1.09d− 1 6

4.932d+ 03 1.31d3 114.91 60 9.23d− 1 6

2.59d+ 03 1.06d3 7.33 100 1.08d+ 0 6

4.82d+ 13 1.50d3 2.27 170 1.59d− 2 6

3.84d+ 11 1.50d3 2.05 230 1.06d− 4 6
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Bratu problem

A problem with no solution

y′′ = λey, y(0) = y(1) = 0, λ = 3.55

Numerical Solution using TOM (WRCE/WRSE)

Reltol = 10−3, Abstol = 10−6.
The solver is unable to give a solution.

Reltol = 10−2, Abstol = 10−2.

the solver finds a pseudo solution on the given mesh
with the warning that the conditioning parameters
are not stabilized.
If we force the solver to find also the conditioning
parameters, it fails to give any solution.
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Troesh equation

y′′ = µ sinh(µy) y(0) = 0, y(1) = 1.

Numerical Solution using TOM (WRCE),
Reltol = 1d− 3, Abstol = 1d− 3
Initial guess: y = 0.5; y′ = 0;

µ κ(π) κ1(π) γ1(π) N itnl

10 7.66d+ 02 7.61d+ 02 2.55 70 6

20 2.20d+ 05 2.20d+ 05 2.17 215 11

30 4.91d+ 07 4.91d+ 07 2.11 291 17

40 9.72d+ 09 9.72d+ 09 2.22 460 21

50 1.80d+ 12 1.80d+ 12 2.18 605 26

Similar results are obtained with TOM (WRSE).
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How to solve a problem using TOM

The solver TOM is available on the web site:
http://www.dm.uniba.it/~mazzia/bvp/index.html

It is written in MATLAB, for uniformity the calling sequence
is similar to the one of BVP4c:
» sol = tom(odefun,bcfun,solinit)

auxiliary function
tomget Get TOM OPTIONS parameters.
tomset Create/alter TOM OPTIONS structure.
tominit Form the initial guess for TOM.
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Conclusions

The purpose of this talk was to give an overview of the
role of conditioning in the solution of two-point boundary
value problems.

We have shown how to estimate the condition number
of a problem and how to incorporate this estimate into a
mesh selection algorithm.

We have show that the parameters κ1, γ1 and κ give all
the information about the conditioning and the stiffness
of the problem.

We have also established the important concept that we
need to wait until the condition constants have settled
down before testing for accuracy and that this applies
both to TOM and TWPBVP.
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